Back to Search Start Over

Induction of Natural Defenses in Tomato Seedlings by Using Alginate and Oligoalginates Derivatives Extracted from Moroccan Brown Algae

Authors :
Meriem Aitouguinane
Soukaina Bouissil
Anouar Mouhoub
Halima Rchid
Imen Fendri
Slim Abdelkafi
Mohamed Didi Ould El-Hadj
Zakaria Boual
Pascal Dubessay
Christine Gardarin
Philippe Michaud
Zainab El Alaoui-Talibi
Cherkaoui El Modafar
Guillaume Pierre
Cédric Delattre
Source :
Marine Drugs, Vol 18, Iss 10, p 521 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Polysaccharides extracted from marine algae have attracted much attention due to their biotechnological applications, including therapeutics, cosmetics, and mainly in agriculture and horticulture as biostimulants, biofertilizers, and stimulators of the natural defenses of plants. This study aimed to evaluate the ability of alginate isolated from Bifurcaria bifurcata from the Moroccan coast and oligoalginates derivatives to stimulate the natural defenses of tomato seedlings. Elicitation was carried out by the internodal injection of bioelicitor solutions. The elicitor capacities were evaluated by monitoring the activity of phenylalanine ammonia-lyase (PAL) as well as polyphenols content in the leaves located above the elicitation site for 5 days. Alginate and oligoalginates treatments triggered plant defense responses, which showed their capacity to significantly induce the PAL activity and phenolic compounds accumulation in the leaves of tomato seedlings. Elicitation by alginates and oligoalginates showed an intensive induction of PAL activity, increasing from 12 h of treatment and remaining at high levels throughout the period of treatment. The amount of polyphenols in the leaves was increased rapidly and strongly from 12 h of elicitation by both saccharide solutions, representing peaks value after 24 h of application. Oligoalginates exhibited an effective elicitor capacity in polyphenols accumulation compared to alginate polymers. The alginate and oligosaccharides derivatives revealed a similar elicitor capacity in PAL activity whereas the accumulation of phenolic compounds showed a differential effect. Polysaccharides extracted from the brown seaweed Bifurcaria bifurcate and oligosaccharides derivatives induced significantly the phenylpropanoid metabolism in tomato seedlings. These results contribute to the valorization of marine biomass as a potential bioresource for plant protection against phytopathogens in the context of eco-sustainable green technology.

Details

Language :
English
ISSN :
16603397
Volume :
18
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Marine Drugs
Publication Type :
Academic Journal
Accession number :
edsdoj.729e61d47edf40f7b125e2559cb5b9b9
Document Type :
article
Full Text :
https://doi.org/10.3390/md18100521