Back to Search Start Over

ECG-Based Stress Detection and Productivity Factors Monitoring: The Real-Time Production Factory System

Authors :
Massimiliano Donati
Martina Olivelli
Romano Giovannini
Luca Fanucci
Source :
Sensors, Vol 23, Iss 12, p 5502 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Productivity and production quality have become primary goals for the success of companies in all industrial and manufacturing sectors. Performance in terms of productivity is influenced by several factors including machinery efficiency, work environment and safety conditions, production processes organization, and aspects related to workers’ behavior (human factors). In particular, work-related stress is among the human factors that are most impactful and difficult to capture. Thus, optimizing productivity and quality in an effective way requires considering all these factors simultaneously. The proposed system aims to detect workers’ stress and fatigue in real time using wearable sensors and machine learning techniques and also integrate all data regarding the monitoring of production processes and the work environment into a single platform. This allows comprehensive multidimensional data analysis and correlation research, enabling organizations to improve productivity through appropriate work environments and sustainable processes for workers. The on-field trial demonstrated the technical and operational feasibility of the system, its high degree of usability, and the ability to detect stress from ECG signals exploiting a 1D Convolutional Neural Network (accuracy 88.4%, F1-score 0.90).

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.72372d5d5d954bf5acd8484a5b3e85fb
Document Type :
article
Full Text :
https://doi.org/10.3390/s23125502