Back to Search
Start Over
A High-Performance InGaAs Vertical Electron–Hole Bilayer Tunnel Field Effect Transistor with P+-Pocket and InAlAs-Block
- Source :
- Micromachines, Vol 14, Iss 11, p 2049 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- To give consideration to both chip density and device performance, an In0.53Ga0.47As vertical electron–hole bilayer tunnel field effect transistor (EHBTFET) with a P+-pocket and an In0.52Al0.48As-block (VPB-EHBTFET) is introduced and systematically studied by TCAD simulation. The introduction of the P+-pocket can reduce the line tunneling distance, thereby enhancing the on-state current. This can also effectively address the challenge of forming a hole inversion layer in an undoped InGaAs channel during device fabrication. Moreover, the point tunneling can be significantly suppressed by the In0.52Al0.48As-block, resulting in a substantial decrease in the off-state current. By optimizing the width and doping concentration of the P+-pocket as well as the length and width of the In0.52Al0.48As-block, VPB-EHBTFET can obtain an off-state current of 1.83 × 10−19 A/μm, on-state current of 1.04 × 10−4 A/μm, and an average subthreshold swing of 5.5 mV/dec. Compared with traditional InGaAs vertical EHBTFET, the proposed VPB-EHBTFET has a three orders of magnitude decrease in the off-state current, about six times increase in the on-state current, 81.8% reduction in the average subthreshold swing, and stronger inhibitory ability on the drain-induced barrier-lowering effect (7.5 mV/V); these benefits enhance the practical application of EHBTFETs.
Details
- Language :
- English
- ISSN :
- 2072666X
- Volume :
- 14
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Micromachines
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.71a5a8dc7bf147f2ae0e62f588236862
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/mi14112049