Back to Search
Start Over
Stability for noncoercive elliptic equations
- Source :
- Electronic Journal of Differential Equations, Vol 2016, Iss 242,, Pp 1-11 (2016)
- Publication Year :
- 2016
- Publisher :
- Texas State University, 2016.
-
Abstract
- In this article, we consider the stability for elliptic problems that have degenerate coercivity in their principal part, $$\displaylines{ -\text{div}\Big(\frac{|\nabla u|^{p-2}\nabla u}{(1+|u|)^{\theta(p-1)}}\Big) +|u|^{q-1}u=f,\quad x\in\Omega, \cr u(x)=0,\quad x\in \partial\Omega, }$$ where $\theta>0$, $\Omega\subseteq \mathbb{R}^N$ is a bounded domain. Let K be a compact subset in $\Omega$ with zero r-capacity ($pr(p-1)[1+\theta(p-1)]/(r-p)$, and $u_n$ is the sequence of solutions of the corresponding problems with datum $f_n$. Then $u_n$ converges to the solution u.
- Subjects :
- Removable singularity
capacity
noncoercive elliptic equation
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 10726691
- Volume :
- 2016
- Issue :
- 242,
- Database :
- Directory of Open Access Journals
- Journal :
- Electronic Journal of Differential Equations
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.718d62ad8bb4a6e92fe094fda4bae82
- Document Type :
- article