Back to Search Start Over

A TMVP1-modified near-infrared nanoprobe: molecular imaging for tumor metastasis in sentinel lymph node and targeted enhanced photothermal therapy

Authors :
Xueqian Wang
Geyang Dai
Guiying Jiang
Danya Zhang
Ling Wang
Wen Zhang
Huang Chen
Teng Cheng
Ying Zhou
Xiao Wei
Fei Li
Ding Ma
Songwei Tan
Rui Wei
Ling Xi
Source :
Journal of Nanobiotechnology, Vol 21, Iss 1, Pp 1-19 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background TMVP1 is a novel tumor targeting polypeptide screened by our laboratory with a core sequence of five amino acids LARGR. It specially binds to vascular endothelial growth factor receptor-3 (VEGFR-3), which is mainly expressed on neo-lymphatic vessels in sentinel lymph node (SLN) with tumor metastasis in adults. Here, we prepared a targeted nanoprobe using TMVP1-modified nanomaterials for tumor metastasis SLN imaging. Results In this study, TMVP1-modified polymer nanomaterials were loaded with the near-infrared (NIR) fluorescent dye, indocyanine green (ICG), to prepare a molecular imaging TMVP1-ICG nanoparticles (NPs) to identify tumor metastasis in SLN at molecular level. TMVP1-ICG-NPs were successfully prepared using the nano-precipitation method. The particle diameter, morphology, drug encapsulation efficiency, UV absorption spectrum, cytotoxicity, safety, and pharmacokinetic properties were determined. The TMVP1-ICG-NPs had a diameter of approximately 130 nm and an ICG loading rate of 70%. In vitro cell experiments and in vivo mouse experiments confirmed that TMVP1-ICG-NPs have good targeting ability to tumors in situ and to SLN with tumor metastasis by binding to VEGFR-3. Effective photothermal therapy (PTT) with TMVP1-ICG-NPs was confirmed in vitro and in vivo. As expected, TMVP1-ICG-NPs improved ICG blood stability, targeted tumor metastasis to SLN, and enhanced PTT/photodynamic (PDT) therapy, without obvious cytotoxicity, making it a promising theranostic nanomedicine. Conclusion TMVP1-ICG-NPs identified SLN with tumor metastasis and were used to perform imaging-guided PTT, which makes it a promising strategy for providing real-time NIR fluorescence imaging and intraoperative PTT for patients with SLN metastasis.

Details

Language :
English
ISSN :
14773155
Volume :
21
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.7140338f7c5e4f6989e8730527205fd7
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-023-01883-6