Back to Search
Start Over
Single-atom exploration of optimized nonequilibrium quantum thermodynamics by reinforcement learning
- Source :
- Communications Physics, Vol 6, Iss 1, Pp 1-8 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract Exploring optimized processes of thermodynamics at microscale is vital to exploitation of quantum advantages relevant to microscopic machines and quantum information processing. Here, we experimentally execute a reinforcement learning strategy, using a single trapped 40Ca+ ion, for engineering quantum state evolution out of thermal equilibrium. We consider a qubit system coupled to classical and quantum baths, respectively, the former of which is achieved by switching on the spontaneous emission relevant to the qubit and the latter of which is made based on a Jaynes-Cummings model involving the qubit and the vibrational degree of freedom of the ion. Our optimized operations make use of the external control on the qubit, designed by the reinforcement learning approach. In comparison to the conventional situation of free evolution subject to the same Hamiltonian of interest, our experimental implementation presents the evolution of the states with higher fidelity while with less consumption of entropy production and work, highlighting the potential of reinforcement learning in accomplishment of optimized nonequilibrium thermodynamic processes at atomic level.
- Subjects :
- Astrophysics
QB460-466
Physics
QC1-999
Subjects
Details
- Language :
- English
- ISSN :
- 23993650
- Volume :
- 6
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.70d188dc6c7b49589a3f2217439e15ba
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s42005-023-01408-5