Back to Search Start Over

Deep Learning and Optimization-Based Methods for Skin Lesions Segmentation: A Review

Authors :
Khalid M. Hosny
Doaa Elshoura
Ehab R. Mohamed
Eleni Vrochidou
George A. Papakostas
Source :
IEEE Access, Vol 11, Pp 85467-85488 (2023)
Publication Year :
2023
Publisher :
IEEE, 2023.

Abstract

Skin cancer is a senior public health issue that could profit from computer-aided diagnosis to decrease the encumbrance of this widespread disease. Researchers have been more motivated to develop computer-aided diagnosis systems because visual examination wastes time. The initial stage in skin lesion analysis is skin lesion segmentation, which might assist in the following categorization task. It is a difficult task because sometimes the whole lesion might be the same colors, and the borders of pigment regions can be foggy. Several studies have effectively handled skin lesion segmentation; nevertheless, developing new methodologies to improve efficiency is necessary. This work thoroughly analyzes the most advanced algorithms and methods for skin lesion segmentation. The review begins with traditional segmentation techniques, followed by a brief review of skin lesion segmentation using deep learning and optimization techniques. The main objective of this work is to highlight the strengths and weaknesses of a wide range of algorithms. Additionally, it examines various commonly used datasets for skin lesions and the metrics used to evaluate the performance of these techniques.

Details

Language :
English
ISSN :
21693536
Volume :
11
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.70606bac2004f50ac7bfdf95339bf40
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2023.3303961