Back to Search Start Over

Recycling Aggregates for Self-Compacting Concrete Production: A Feasible Option

Authors :
Rebeca Martínez-García
M. Ignacio Guerra-Romero
Julia M. Morán-del Pozo
Jorge de Brito
Andrés Juan-Valdés
Source :
Materials, Vol 13, Iss 4, p 868 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

The use of construction and demolition wastes (C&DW) is a trending future option for the sustainability of construction. In this context, a number of works deal with the use of recycled concrete aggregates to produce concrete for structural and non-structural purposes. Nowadays, an important number of C&DW management plants in the European Union (EU) and other countries have developed robust protocols to obtain high-quality coarse recycled aggregates that comply with different European standards in order to be used to produce new concrete. The development of self-compacting concrete (SCC) is another way to boost the sustainability of construction, due to the important reduction of energy employed. Using recycled aggregates is a relatively recent scientific area, however, studies on this material in the manufacture of self-compacting concrete have proven the feasibility thereof for conventional structural elements as well as high-performance and complex structural elements, densely reinforced structures, difficult-to-access formwork and difficult-to-vibrate elements. This paper presents an original study on the use of coarse recycled concrete aggregate (CRA) to obtain self-compacting concrete. Concrete with substitution ratios of 20%, 50% and 100% are compared with a control concrete. The purpose of this comparison is to check the influence of CRA on fresh SCC as well as its physical and mechanical properties. The parameters studied are material characterization, self-compactability, compressive strength, and tensile and flexural strength of the resulting concrete. The results conclude that it is feasible to use CRA for SCC production with minimal losses in the characteristics.

Details

Language :
English
ISSN :
19961944
Volume :
13
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.705bdb3bf9234d3e9e1dfbde611ea2b4
Document Type :
article
Full Text :
https://doi.org/10.3390/ma13040868