Back to Search Start Over

Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory

Authors :
Yilei Wu
Chang-Feng Wang
Ming-Gang Ju
Qiangqiang Jia
Qionghua Zhou
Shuaihua Lu
Xinying Gao
Yi Zhang
Jinlan Wang
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The past decade has witnessed the significant efforts in novel material discovery in the use of data-driven techniques, in particular, machine learning (ML). However, since it needs to consider the precursors, experimental conditions, and availability of reactants, material synthesis is generally much more complex than property and structure prediction, and very few computational predictions are experimentally realized. To solve these challenges, a universal framework that integrates high-throughput experiments, a priori knowledge of chemistry, and ML techniques such as subgroup discovery and support vector machine is proposed to guide the experimental synthesis of materials, which is capable of disclosing structure-property relationship hidden in high-throughput experiments and rapidly screening out materials with high synthesis feasibility from vast chemical space. Through application of our approach to challenging and consequential synthesis problem of 2D silver/bismuth organic-inorganic hybrid perovskites, we have increased the success rate of the synthesis feasibility by a factor of four relative to traditional approaches. This study provides a practical route for solving multidimensional chemical acceleration problems with small dataset from typical laboratory with limited experimental resources available.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.6fed056a65d84e40a3f6f3e50a8b3988
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-44236-5