Back to Search Start Over

Rainfall modeling using two different neural networks improved by metaheuristic algorithms

Authors :
Saad Sh. Sammen
Ozgur Kisi
Mohammad Ehteram
Ahmed El-Shafie
Nadhir Al-Ansari
Mohammad Ali Ghorbani
Shakeel Ahmad Bhat
Ali Najah Ahmed
Shamsuddin Shahid
Source :
Environmental Sciences Europe, Vol 35, Iss 1, Pp 1-16 (2023)
Publication Year :
2023
Publisher :
SpringerOpen, 2023.

Abstract

Abstract Rainfall is crucial for the development and management of water resources. Six hybrid soft computing models, including multilayer perceptron (MLP)–Henry gas solubility optimization (HGSO), MLP–bat algorithm (MLP–BA), MLP–particle swarm optimization (MLP–PSO), radial basis neural network function (RBFNN)–HGSO, RBFNN–PSO, and RBFGNN–BA, were used in this study to forecast monthly rainfall at two stations in Malaysia (Sara and Banding). Different statistical measures (mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE) and percentage of BIAS (PBIAS)) and a Taylor diagram were used to assess the models’ performance. The results indicated that the MLP–HGSO performed better than the other models in forecasting rainfall at both stations. In addition, transition matrices were computed for each station and year based on the conditional probability of rainfall or absence of rainfall on a given month. The values of MAE for testing processes for the MLP–HGSO, MLP–PSO, MLP–BA, RBFNN–HGSO, RBFNN–BA, and RBFNN–PSO at the first station were 0.712, 0.755, 0.765, 0.717, 0.865, and 0.891, while the corresponding NSE and PBIAS values were 0.90–0.23, 0.83–0.29, 0.85–0.25, 0.87–0.27, 0.81–0.31, and 0.80–0.35, respectively. For the second station, the values of MAE were found 0.711, 0.743, 0.742, 0.719, 0.863 and 0.890 for the MLP–HGSO, MLP–PSO, MLP–BA, RBFNN–HGSO, RBFNN–BA, and RBFNN–PSO during testing processes and the corresponding NSE–PBIAS values were 0.92–0.22, 0.85–0.28, 0.89–0.26, 0.91–0.25, 0.83–0.31, 0.82–0.32, respectively. Based on the outputs of the MLP–HGSO, the highest rainfall was recorded in 2012 with a probability of 0.72, while the lowest rainfall was recorded in 2006 with a probability of 0.52 at the Sara Station. In addition, the results indicated that the MLP–HGSO performed better than the other models within the Banding Station. According to the findings, the hybrid MLP–HGSO was selected as an effective rainfall prediction model.

Details

Language :
English
ISSN :
21904715
Volume :
35
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Environmental Sciences Europe
Publication Type :
Academic Journal
Accession number :
edsdoj.6fcaa6591d5a4ea5abf4987408f0cc59
Document Type :
article
Full Text :
https://doi.org/10.1186/s12302-023-00818-0