Back to Search
Start Over
Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings
- Source :
- BMC Plant Biology, Vol 21, Iss 1, Pp 1-14 (2021)
- Publication Year :
- 2021
- Publisher :
- BMC, 2021.
-
Abstract
- Abstract Background Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin’s role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 μM) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40–45% of field capacity. Results The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. Conclusions Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 μM melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.
- Subjects :
- Melatonin
Leaf ultrastructure
Antioxidant enzymes
Drought stress
Maize
Botany
QK1-989
Subjects
Details
- Language :
- English
- ISSN :
- 14712229
- Volume :
- 21
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- BMC Plant Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6f86b49b7694b36997327afabd5f670
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12870-021-03160-w