Back to Search Start Over

Evidence for impulsive solar wind plasma penetration through the dayside magnetopause

Authors :
R. Lundin
J.-A. Sauvaud
H. Rème
A. Balogh
I. Dandouras
J. M. Bosqued
C. Carlson
G. K. Parks
E. Möbius
L. M. Kistler
B. Klecker
E. Amata
V. Formisano
M. Dunlop
L. Eliasson
A. Korth
B. Lavraud
M. McCarthy
Source :
Annales Geophysicae, Vol 21, Pp 457-472 (2003)
Publication Year :
2003
Publisher :
Copernicus Publications, 2003.

Abstract

This paper presents in situ observational evidence from the Cluster Ion Spectrometer (CIS) on Cluster of injected solar wind "plasma clouds" protruding into the day-side high-latitude magnetopause. The plasma clouds, presumably injected by a transient process through the day-side magnetopause, show characteristics implying a generation mechanism denoted impulsive penetration (Lemaire and Roth, 1978). The injected plasma clouds, hereafter termed "plasma transfer events", (PTEs), (Woch and Lundin, 1991), are temporal in nature and relatively limited in size. They are initially moving inward with a high velocity and a magnetic signature that makes them essentially indistinguishable from regular magnetosheath encounters. Once inside the magnetosphere, however, PTEs are more easily distinguished from magnetopause encounters. The PTEs may still be moving while embedded in an isotropic background of energetic trapped particles but, once inside the magnetosphere, they expand along magnetic field lines. However, they frequently have a significant transverse drift component as well. The drift is localised, thus constituting an excess momentum/motional emf generating electric fields and currents. The induced emf also acts locally, accelerating a pre-existing cold plasma (e.g. Sauvaud et al., 2001). Observations of PTE-signatures range from "active" (strong transverse flow, magnetic turbulence, electric current, local plasma acceleration) to "evanescent" (weak flow, weak current signature). PTEs appear to occur independently of Interplanetary Magnetic Field (IMF) Bz in the vicinity of the polar cusp region, which is consistent with observations of transient plasma injections observed with mid- and high-altitude satellites (e.g. Woch and Lundin, 1992; Stenuit et al., 2001). However the characteristics of PTEs in the magnetosphere boundary layer differ for southward and northward IMF. The Cluster data available up to now indicate that PTEs penetrate deeper into the magnetosphere for northward IMF than for southward IMF. This may or may not mark a difference in nature between PTEs observed for southward and northward IMF. Considering that flux transfer events (FTEs), (Russell and Elphic, 1979), are observed for southward IMF or when the IMF is oriented such that antiparallel merging may occur, it seems likely that PTEs observed for southward IMF are related to FTEs.Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; magnetosphere-ionosphere interactions; solar-wind magnetosphere interactions)

Details

Language :
English
ISSN :
09927689 and 14320576
Volume :
21
Database :
Directory of Open Access Journals
Journal :
Annales Geophysicae
Publication Type :
Academic Journal
Accession number :
edsdoj.6f71d760ca5479c9031cd9f060660e8
Document Type :
article
Full Text :
https://doi.org/10.5194/angeo-21-457-2003