Back to Search Start Over

Dynamic Microscopic Optical Coherence Tomography as a New Diagnostic Tool for Otitis Media

Authors :
Anke Leichtle
Zuzana Penxova
Thorge Kempin
David Leffers
Martin Ahrens
Peter König
Ralf Brinkmann
Gereon Hüttmann
Karl-Ludwig Bruchhage
Hinnerk Schulz-Hildebrandt
Source :
Photonics, Vol 10, Iss 6, p 685 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Hypothesis: Otitis media (OM) can be successfully visualized and diagnosed by dynamic microscopic optical coherence tomography (dmOCT). Background: OM is one of the most common infectious diseases and, according to the WHO, one of the leading health problems with high mortality in developing countries. Despite intensive research, the only definitive treatment of therapy-refractory OM for decades has been the surgical removal of inflamed tissue. Thereby, the intra-operative diagnosis is limited to the surgeon’s visual impression. Supportive imaging modalities have been little explored and have not found their way into clinical application. Finding imaging techniques capable of identifying inflamed tissue intraoperatively, therefore, is of significant clinical relevance. Methods: This work investigated a modified version of optical coherence tomography with a microscopic resolution (mOCT) regarding its ability to differentiate between healthy and inflamed tissue. Despite its high resolution, the differentiation of single cells with mOCT is often impossible. A new form of mOCT termed dynamic mOCT (dmOCT) achieves cellular contrast using micro-movements within cells based on their metabolism. It was used in this study to establish correlative measurements with histology. Results: Using dmOCT, images with microscopic resolution were acquired on ex vivo tissue samples of chronic otitis media and cholesteatoma. Imaging with dmOCT allowed the visualization of specific and characteristic cellular and subcellular structures in the cross-sectional images, which can be identified only to a limited extent in native mOCT. Conclusion: We demonstrated for the first time a new marker-free visualization in otitis media based on intracellular motion using dmOCT.

Details

Language :
English
ISSN :
10060685 and 23046732
Volume :
10
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Photonics
Publication Type :
Academic Journal
Accession number :
edsdoj.6f57a762304c474e9e689fb5d44d0d7d
Document Type :
article
Full Text :
https://doi.org/10.3390/photonics10060685