Back to Search Start Over

Boundary value problems for integro-differential and singular higher-order differential equations

Authors :
Anceschi Francesca
Calamai Alessandro
Marcelli Cristina
Papalini Francesca
Source :
Open Mathematics, Vol 22, Iss 1, Pp 1733-1742 (2024)
Publication Year :
2024
Publisher :
De Gruyter, 2024.

Abstract

We investigate third-order strongly nonlinear differential equations of the type (Φ(k(t)u″(t)))′=f(t,u(t),u′(t),u″(t)),a.e. on[0,T],\left(\Phi \left(k\left(t){u}^{^{\prime\prime} }\left(t)))^{\prime} =f\left(t,u\left(t),u^{\prime} \left(t),{u}^{^{\prime\prime} }\left(t)),\hspace{1em}\hspace{0.1em}\text{a.e. on}\hspace{0.1em}\hspace{0.33em}\left[0,T], where Φ\Phi is a strictly increasing homeomorphism, and the non-negative function kk may vanish on a set of measure zero. Using the upper and lower solution method, we prove existence results for some boundary value problems associated with the aforementioned equation. Moreover, we also consider second-order integro-differential equations like (Φ(k(t)v′(t)))′=ft,∫0tv(s)ds,v(t),v′(t),a.e. on[0,T],\left(\Phi \left(k\left(t)v^{\prime} \left(t)))^{\prime} =f\left(t,\underset{0}{\overset{t}{\int }}v\left(s){\rm{d}}s,v\left(t),v^{\prime} \left(t)\right),\hspace{1em}\hspace{0.1em}\text{a.e. on}\hspace{0.1em}\hspace{0.33em}\left[0,T], for which we provide existence results for various types of boundary conditions, including periodic, Sturm-Liouville, and Neumann-type conditions.

Details

Language :
English
ISSN :
23915455
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Open Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.6ee16f093b9541c0a107fc090fdf2791
Document Type :
article
Full Text :
https://doi.org/10.1515/math-2024-0008