Back to Search Start Over

Preliminary expression profile of cytokines in brain tissue of BALB/c mice with Angiostrongylus cantonensis infection

Authors :
Liping Yu
Xiaoying Wu
Jie Wei
Qi Liao
Lian Xu
Siqi Luo
Xin Zeng
Yi Zhao
Zhiyue Lv
Zhongdao Wu
Source :
Parasites & Vectors, Vol 8, Iss 1, Pp 1-10 (2015)
Publication Year :
2015
Publisher :
BMC, 2015.

Abstract

Abstract Background Angiostrongylus cantonensis (A. cantonensis) infection can result in increased risk of eosinophilic meningitis. Accumulation of eosinophils and inflammation can result in the A. cantonensis infection playing an important role in brain tissue injury during this pathological process. However, underlying mechanisms regarding the transcriptomic responses during brain tissue injury caused by A. cantonensis infection are yet to be elucidated. This study is aimed at identifying some genomic and transcriptomic factors influencing the accumulation of eosinophils and inflammation in the mouse brain infected with A. cantonensis. Methods An infected mouse model was prepared based on our laboratory experimental process, and then the mouse brain RNA Libraries were constructed for deep Sequencing with Illumina Genome Analyzer. The raw data was processed with a bioinformatics’ pipeline including Refseq genes expression analysis using cufflinks, annotation and classification of RNAs, lncRNA prediction as well as analysis of co-expression network. The analysis of Refseq data provides the measure of the presence and prevalence of transcripts from known and previously unknown genes. Results This study showed that Cys-Cys (CC) type chemokines such as CCL2, CCL8, CCL1, CCL24, CCL11, CCL7, CCL12 and CCL5 were elevated significantly at the late phase of infection. The up-regulation of CCL2 indicated that the worm of A. cantonensis had migrated into the mouse brain at an early infection phase. CCL2 could be induced in the brain injury during migration and CCL2 might play a major role in the neuropathic pain caused by A. cantonensis infection. The up-regulated expression of IL-4, IL-5, IL-10, and IL-13 showed Th2 cell predominance in immunopathological reactions at late infection phase in response to infection by A. cantonensis. These different cytokines can modulate and inhibit each other and function as a network with the specific potential to drive brain eosinophilic inflammation. The increase of ATF-3 expression at 21 dpi suggested the injury of neuronal cells at late phase of infection. 1217 new potential lncRNA were candidates of interest for further research. Conclusions These cytokine networks play an important role in the development of central nervous system inflammation caused by A. cantonensis infection.

Details

Language :
English
ISSN :
17563305
Volume :
8
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Parasites & Vectors
Publication Type :
Academic Journal
Accession number :
edsdoj.6ed0915a28374367aae92b870fa40fbf
Document Type :
article
Full Text :
https://doi.org/10.1186/s13071-015-0939-6