Back to Search
Start Over
Decreased Vessel Density in Retinal Capillary Plexus and Thinner Ganglion Cell Complex Associated With Cognitive Impairment
- Source :
- Frontiers in Aging Neuroscience, Vol 14 (2022)
- Publication Year :
- 2022
- Publisher :
- Frontiers Media S.A., 2022.
-
Abstract
- BackgroundTo determine the association of the retinal capillary plexus (RCP) and ganglion cell complex (GCC) with cognitive impairment using optical coherence tomography angiography (OCTA).MethodsA cross-sectional, community-based study utilizing data from the participants enrolled between August 2019 and January 2020 in the Jidong Eye Cohort Study. We assessed the vessel density in RCP and GCC thickness using OCTA, and cognitive testing using the Montreal Cognitive Assessment (MoCA). Cognitive impairment in this study was defined as MoCA score < 24. We used multivariable analysis to evaluate the association of RCP and GCC with cognitive impairment after adjusting for confounders.ResultsThis study analyzed 1555 participants. The mean age of participants was 52.3 (8.4) years, and 861 (55.4%) were women. Cognitive impairment was observed in 268 (17.2%) participants. The adjusted odds ratio (OR) with 95% confidence interval (95% CI) for parafovea vessel density in the deep RCP with cognitive impairment was 1.20 (1.03–1.39). For vessel area and length density surrounding foveal avascular zone with cognitive impairment, the ORs with 95% CIs were 1.23 (1.07–1.41) and 1.30 (1.13–1.49), respectively. For thickness in the superior GCC with cognitive impairment, the OR with 95% CI was 1.16 (1.01–1.32).ConclusionLower vessel density in the RCP and thinner GCC were associated with cognitive impairment. Our results suggest that alterations in the RCP and GCC could provide further evidence when assessing the cognitive function and may even be potentially useful biomarkers in the detection of cognitive impairment.
Details
- Language :
- English
- ISSN :
- 16634365
- Volume :
- 14
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Aging Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6e85c66e1cee4740be7e855c57414a9c
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fnagi.2022.872466