Back to Search
Start Over
Effects of Thermal Shock on the Microstructures and Mechanical Properties Evolution of 310S Welded Joints at 1100 °C
- Source :
- Metals, Vol 12, Iss 10, p 1685 (2022)
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- In order to reveal the effects of the glass solidification bottling process of high-level liquid radioactive wastes on the welded joints of containers, the microstructure evolution and mechanical properties of 310S stainless steel welded joints were investigated. For this purpose, samples were heat-treated in a resistance furnace at 1100 °C, with two groups of samples being thermally shocked and heat-treated in the furnace. The results indicated that the grain-size distribution changed from unimodal to bimodal for the thermally shocked samples, which was caused by abnormal growth due to the grain growth driving force during recrystallization. Spinel oxide ((Fe, Cr, Ni)3O4) and Cr2O3 were the main oxides at 1100 °C. The dislocations almost disappeared and needle-like structures that were rich in N and Cr formed in the welded joints after being thermally shocked. The tensile properties of the thermally shocked welded joints showed decreases in yield strength and plasticity. The fracture morphologies of the samples heated in the furnace and the as-welded samples presented with dimples. However, the morphologies of the fracture surfaces of the thermally shocked samples presented large numbers of secondary cracks and smooth characteristics.
Details
- Language :
- English
- ISSN :
- 20754701
- Volume :
- 12
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- Metals
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6e83e1f0a4aa46e4a719746d05cd07a1
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/met12101685