Back to Search Start Over

Habitat radiomics and deep learning fusion nomogram to predict EGFR mutation status in stage I non-small cell lung cancer: a multicenter study

Authors :
Jingran Wu
Hao Meng
Lin Zhou
Meiling Wang
Shanxiu Jin
Hongjuan Ji
Bona Liu
Peng Jin
Cheng Du
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Develop a radiomics nomogram that integrates deep learning, radiomics, and clinical variables to predict epidermal growth factor receptor (EGFR) mutation status in patients with stage I non-small cell lung cancer (NSCLC). We retrospectively included 438 patients who underwent curative surgery and completed driver-gene mutation tests for stage I NSCLC from four academic medical centers. Predictive models were established by extracting and analyzing radiomic features in intratumoral, peritumoral, and habitat regions of CT images to identify EGFR mutation status in stage I NSCLC. Additionally, three deep learning models based on the intratumoral region were constructed. A nomogram was developed by integrating representative radiomic signatures, deep learning, and clinical features. Model performance was assessed by calculating the area under the receiver operating characteristic (ROC) curve. The established habitat radiomics features demonstrated encouraging performance in discriminating between EGFR mutant and wild-type, with predictive ability superior to other single models (AUC 0.886, 0.812, and 0.790 for the training, validation, and external test sets, respectively). The radiomics-based nomogram exhibited excellent performance, achieving the highest AUC values of 0.917, 0.837, and 0.809 in the training, validation, and external test sets, respectively. Decision curve analysis (DCA) indicated that the nomogram provided a higher net benefit than other radiomics models, offering valuable information for treatment.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.6e7fe75ae13c4fc4a0d2ba4f30e6faab
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-66751-1