Back to Search Start Over

Finite skew braces of square-free order and supersolubility

Authors :
A. Ballester-Bolinches
R. Esteban-Romero
M. Ferrara
V. Pérez-Calabuig
M. Trombetti
Source :
Forum of Mathematics, Sigma, Vol 12 (2024)
Publication Year :
2024
Publisher :
Cambridge University Press, 2024.

Abstract

The aim of this paper is to study supersoluble skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers and that in an arbitrary supersoluble skew brace B many relevant skew brace-theoretical properties are easier to identify: For example, a centrally nilpotent ideal of B is B-centrally nilpotent, a fact that simplifies the computational search for the Fitting ideal; also, B has finite multipermutational level if and only if $(B,+)$ is nilpotent.

Details

Language :
English
ISSN :
20505094
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Forum of Mathematics, Sigma
Publication Type :
Academic Journal
Accession number :
edsdoj.6e5ce0ad0fc94e7f95e00f89ed2de49d
Document Type :
article
Full Text :
https://doi.org/10.1017/fms.2024.29