Back to Search Start Over

Superconductivity in unconventional metals

Authors :
Zhilong Yang
Haohao Sheng
Zhaopeng Guo
Ruihan Zhang
Quansheng Wu
Hongming Weng
Zhong Fang
Zhijun Wang
Source :
npj Computational Materials, Vol 10, Iss 1, Pp 1-6 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Based on first-principles calculations, we demonstrate that 1H/2H-phase transition metal dichalcogenides M X 2 (M = Nb, Ta; X = S, Se, Te) are unconventional metals, which have an empty-site band of $${A}_{1}^{{\prime} }@1e$$ A 1 ′ @ 1 e elementary band representation at the Fermi level. The computed phonon dispersions indicate the stability of the system at high temperatures, while the presence of the soft phonon mode suggests a phase transition to the charge density wave state at low temperatures. Based on the Bardeen-Cooper-Schrieffer theory and computed electron-phonon coupling, our calculations show that the superconductivity (SC) in NbSe2 is mainly attributed to the soft phonon mode due to the half filling of the empty-site band. Accordingly, the SC has been predicted in unconventional metals TaNS monolayer and 2H-TaN2 bulk with computed T C = 10 K and 26 K respectively. These results demonstrate that the unconventional metals with partial filling of the empty-site band offer an attractive platform to search for superconductors.

Details

Language :
English
ISSN :
20573960
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Computational Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.6e5467be2f21486c8e67dda31499fda9
Document Type :
article
Full Text :
https://doi.org/10.1038/s41524-024-01210-z