Back to Search Start Over

A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate

Authors :
D. A. Hauglustaine
Y. Balkanski
M. Schulz
Source :
Atmospheric Chemistry and Physics, Vol 14, Iss 20, Pp 11031-11063 (2014)
Publication Year :
2014
Publisher :
Copernicus Publications, 2014.

Abstract

The ammonia cycle and nitrate particle formation are introduced into the LMDz-INCA (Laboratoire de Météorologie Dynamique, version 4 – INteraction with Chemistry and Aerosols, version 3) global model. An important aspect of this new model is that both fine nitrate particle formation in the accumulation mode and coarse nitrate forming on existing dust and sea-salt particles are considered. The model simulates distributions of nitrates and related species in agreement with previous studies and observations. The calculated present-day total nitrate direct radiative forcing since the pre-industrial is −0.056 W m−2. This forcing corresponds to 18% of the sulfate forcing. Fine particles largely dominate the nitrate forcing, representing close to 90% of this value. The model has been used to investigate the future changes in nitrates and direct radiative forcing of climate based on snapshot simulations for the four representative concentration pathway (RCP) scenarios and for the 2030, 2050, and 2100 time horizons. Due to a decrease in fossil fuel emissions in the future, the concentration of most of the species involved in the nitrate–ammonium–sulfate system drop by 2100 except for ammonia, which originates from agricultural practices and for which emissions significantly increase in the future. Despite the decrease of nitrate surface levels in Europe and North America, the global burden of accumulation mode nitrates increases by up to a factor of 2.6 in 2100. This increase in ammonium nitrate in the future arises despite decreasing NOx emissions due to increased availability of ammonia to form ammonium nitrate. The total aerosol direct forcing decreases from its present-day value of −0.234 W m−2 to a range of −0.070 to −0.130 W m−2 in 2100 based on the considered scenario. The direct forcing decreases for all aerosols except for nitrates, for which the direct negative forcing increases to a range of −0.060 to −0.115 W m−2 in 2100. Including nitrates in the radiative forcing calculations increases the total direct forcing of aerosols by a factor of 1.3 in 2000, by a factor of 1.7–2.6 in 2030, by 1.9–4.8 in 2050, and by 6.4–8.6 in 2100. These results show that the agricultural emissions of ammonia will play a key role in the future mitigation of climate change, with nitrates becoming the dominant contributor to the anthropogenic aerosol optical depth during the second half of the 21st century and significantly increasing the calculated aerosol direct forcing. This significant increase in the influence that nitrate exerts on climate in the future will at the same time affect regional air quality and nitrogen deposition to the ecosystem.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
14
Issue :
20
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.6de216216e70475c87bf4ea1db3645a4
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-14-11031-2014