Back to Search Start Over

Sperm-Specific Glycolysis Enzyme Glyceraldehyde-3-Phosphate Dehydrogenase Regulated by Transcription Factor SOX10 to Promote Uveal Melanoma Tumorigenesis

Authors :
Xia Ding
Lihua Wang
Mingjiao Chen
Yue Wu
Shengfang Ge
Jin Li
Xianqun Fan
Ming Lin
Source :
Frontiers in Cell and Developmental Biology, Vol 9 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

Melanoma cells exhibit increased aerobic glycolysis, which represents a major biochemical alteration associated with malignant transformation; thus, glycolytic enzymes could be exploited to selectively target cancer cells in cancer therapy. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDHS) switches glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate by coupling with the reduction of NAD+ to NADH. Here, we demonstrated that GAPDHS displays significantly higher expression in uveal melanoma (UM) than in normal controls. Functionally, the knockdown of GAPDHS in UM cell lines hindered glycolysis by decreasing glucose uptake, lactate production, adenosine triphosphate (ATP) generation, cell growth and proliferation; conversely, overexpression of GAPDHS promoted glycolysis, cell growth and proliferation. Furthermore, we identified that SOX10 knockdown reduced the activation of GAPDHS, leading to an attenuated malignant phenotype, and that SOX10 overexpression promoted the activation of GAPDHS, leading to an enhanced malignant phenotype. Mechanistically, SOX10 exerted its function by binding to the promoter of GAPDHS to regulate its expression. Importantly, SOX10 abrogation suppressed in vivo tumor growth and proliferation. Collectively, the results reveal that GAPDHS, which is regulated by SOX10, controls glycolysis and contributes to UM tumorigenesis, highlighting its potential as a therapeutic target.

Details

Language :
English
ISSN :
2296634X
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Cell and Developmental Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.6d7f2814b99f49679eb358cacee87ace
Document Type :
article
Full Text :
https://doi.org/10.3389/fcell.2021.610683