Back to Search
Start Over
Effects of Cardiac Stem Cell on Postinfarction Arrhythmogenic Substrate
- Source :
- International Journal of Molecular Sciences, Vol 23, Iss 24, p 16211 (2022)
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- Clinical data suggest that cardiosphere-derived cells (CDCs) could modify post-infarction scar and ventricular remodeling and reduce the incidence of ventricular tachycardia (VT). This paper assesses the effect of CDCs on VT substrate in a pig model of postinfarction monomorphic VT. We studied the effect of CDCs on the electrophysiological properties and histological structure of dense scar and heterogeneous tissue (HT). Optical mapping and histological evaluation were performed 16 weeks after the induction of a myocardial infarction by transient occlusion of the left anterior descending (LAD) artery in 21 pigs. Four weeks after LAD occlusion, pigs were randomized to receive intracoronary plus trans-myocardial CDCs (IC+TM group, n: 10) or to a control group. Optical mapping (OM) showed an action potential duration (APD) gradient between HT and normal tissue in both groups. CDCs increased conduction velocity (53 ± 5 vs. 45 ± 6 cm/s, p < 0.01), prolonged APD (280 ± 30 ms vs. 220 ± 40 ms, p < 0.01) and decreased APD dispersion in the HT. During OM, a VT was induced in one and seven of the IC+TM and control hearts (p = 0.03), respectively; five of these VTs had their critical isthmus located in intra-scar HT found adjacent to the coronary arteries. Histological evaluation of HT revealed less fibrosis (p < 0.01), lower density of myofibroblasts (p = 0.001), and higher density of connexin-43 in the IC+TM group. Scar and left ventricular volumes did not show differences between groups. Allogeneic CDCs early after myocardial infarction can modify the structure and electrophysiology of post-infarction scar. These findings pave the way for novel therapeutic properties of CDCs.
Details
- Language :
- English
- ISSN :
- 14220067 and 16616596
- Volume :
- 23
- Issue :
- 24
- Database :
- Directory of Open Access Journals
- Journal :
- International Journal of Molecular Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6d6c60a43bd546749f3338cd7bae9516
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/ijms232416211