Back to Search Start Over

Recapitulating the Drifting and Fusion of Two-Generation Spheroids on Concave Agarose Microwells

Authors :
Rong Pan
Xiaoyan Yang
Ke Ning
Yuanyuan Xie
Feng Chen
Ling Yu
Source :
International Journal of Molecular Sciences, Vol 24, Iss 15, p 11967 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Cells with various structures and proteins naturally come together to cooperate in vivo. This study used cell spheroids cultured in agarose micro-wells as a 3D model to study the movement of cells or spheroids toward other spheroids. The formation dynamics of tumor spheroids and the interactions of two batches of cells in the agarose micro-wells were studied. The results showed that a concave bottom micro-well (diameter: 2 mm, depth: 2 mm) prepared from 3% agarose could be used to study the interaction of two batches of cells. The initial tumor cell numbers from 5 × 103 cells/well to 6 × 104 cells/well all could form 3D spheroids after 3 days of incubation. Adding the second batch of DU 145 cells to the existing DU 145 spheroid resulted in the formation of satellite cell spheroids around the existing parental tumor spheroid. Complete fusion of two generation cell spheroids was observed when the parental spheroids were formed from 1 × 104 and 2 × 104 cells, and the second batch of cells was 5 × 103 per well. A higher amount of the second batch of cells (1 × 104 cell/well) led to the formation of independent satellite spheroids after 48 h of co-culture, suggesting the behavior of the second batch of cells towards existing parental spheroids depended on various factors, such as the volume of the parental spheroids and the number of the second batch cells. The interactions between the tumor spheroids and Human Umbilical Vein Endothelial Cells (HUVECs) were modeled on concave agarose micro-wells. The HUVECs (3 × 103 cell/well) were observed to gather around the parental tumor spheroids formed from 1 × 104, 2 × 104, and 3 × 104 cells per well rather than aggregate on their own to form HUVEC spheroids. This study highlights the importance of analyzing the biological properties of cells before designing experimental procedures for the sequential fusion of cell spheroids. The study further emphasizes the significant roles that cell density and the volume of the spheroids play in determining the location and movement of cells.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
24
Issue :
15
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.6d6baa66db400f8070d863f916020d
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms241511967