Back to Search Start Over

Trophic structure and energy flow in a shallow-water hydrothermal vent: Insights from a stable isotope approach.

Authors :
Ni-Na Chang
Li-Hung Lin
Tzu-Hsuan Tu
Ming-Shiou Jeng
Yoshito Chikaraishi
Pei-Ling Wang
Source :
PLoS ONE, Vol 13, Iss 10, p e0204753 (2018)
Publication Year :
2018
Publisher :
Public Library of Science (PLoS), 2018.

Abstract

Shallow-water hydrothermal vent ecosystems are distinct from the deep-sea counterparts, because they are in receipt of sustenance from both chemosynthetic and photosynthetic production and have a lack of symbiosis. The trophic linkage and energy flow in these ecosystems, however remain elusive, which allows us poor understanding of the whole spectrum of biological components distributed across such environmental gradients. In this study, a thorough isotopic survey was conducted on various biological specimens and suspended particulates collected along four transects across the venting features of a shallow-water hydrothermal field off Kueishan Island, Taiwan. The isotope data combined with a Bayesian-based mixing model indicate that the vent-associated particulate organic matter (vent POM), as primary contribution of chemoautotrophic populations, has a high δ13C value (-18.2 ± 1.1‰) and a low δ15N value (-1.7 ± 0.4‰). Zooplankton and epibenthic crustaceans, as the fundamental consumers, exhibit δ13C and δ15N values ranging from -21.3 to -19.8‰ and +5.1 to +7.5‰, respectively, and can utilize the vent POM for 38-53% of their diets. The vent-obligate crab Xenograpsus testudinatus shows a large variation in δ13C (from -18.8 to -13.9‰) and δ15N values (from 1.1 to 9.8‰), although an omnivorous trophic level (2.5) is identified for it using δ15N values of amino acids, and it can utilize the vent POM for 6-87% of its diet. The consistently low (< 10.0‰) and overlapping δ15N values for most of the analyzed macroinvertebrates suggest extensive ingestion of chemosynthetic production complementing the photosynthetic production, a weak prey-predator relationship and low trophic complexity possibly imposed by the extreme environmental contexts of shallow-water hydrothermal ecosystems.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
13
Issue :
10
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.6d4e7b0742444d4f89d5c32485d4c0b6
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0204753