Back to Search Start Over

On the Difficulty of FSM-based Hardware Obfuscation

Authors :
Marc Fyrbiak
Sebastian Wallat
Jonathan Déchelotte
Nils Albartus
Sinan Böcker
Russell Tessier
Christof Paar
Source :
Transactions on Cryptographic Hardware and Embedded Systems, Vol 2018, Iss 3 (2018)
Publication Year :
2018
Publisher :
Ruhr-Universität Bochum, 2018.

Abstract

In today’s Integrated Circuit (IC) production chains, a designer’s valuable Intellectual Property (IP) is transparent to diverse stakeholders and thus inevitably prone to piracy. To protect against this threat, numerous defenses based on the obfuscation of a circuit’s control path, i.e. Finite State Machine (FSM), have been proposed and are commonly believed to be secure. However, the security of these sequential obfuscation schemes is doubtful since realistic capabilities of reverse engineering and subsequent manipulation are commonly neglected in the security analysis. The contribution of our work is threefold: First, we demonstrate how high-level control path information can be automatically extracted from third-party, gate-level netlists. To this end, we extend state-of-the-art reverse engineering algorithms to deal with Field Programmable Gate Array (FPGA) gate-level netlists equipped with FSM obfuscation. Second, on the basis of realistic reverse engineering capabilities we carefully review the security of state-of-the-art FSM obfuscation schemes. We reveal several generic strategies that bypass allegedly secure FSM obfuscation schemes and we practically demonstrate our attacks for a several of hardware designs, including cryptographic IP cores. Third, we present the design and implementation of Hardware Nanomites, a novel obfuscation scheme based on partial dynamic reconfiguration that generically mitigates existing algorithmic reverse engineering.

Details

Language :
English
ISSN :
25692925
Volume :
2018
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Transactions on Cryptographic Hardware and Embedded Systems
Publication Type :
Academic Journal
Accession number :
edsdoj.6cf82ea8b981471e98cd8dfa0c1bd695
Document Type :
article
Full Text :
https://doi.org/10.13154/tches.v2018.i3.293-330