Back to Search Start Over

Impact of Foliar Application of ZnO and Fe3O4 Nanoparticles on Seed Yield and Physio-Biochemical Parameters of Cucumber (Cucumis sativus L.) Seed under Open Field and Protected Environment vis a vis during Seed Germination

Authors :
Nakul Gupta
Sudhir Kumar Jain
Bhoopal Singh Tomar
Anjali Anand
Jogendra Singh
Vidya Sagar
Rajesh Kumar
Vikas Singh
Tribhuvan Chaubey
Kamel A. Abd-Elsalam
Awani Kumar Singh
Source :
Plants, Vol 11, Iss 23, p 3211 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Nutritionally rich cucumber seeds remain in demand in the agricultural, health and cosmetic sectors as they are essential for a successful crop stand establishment and seed-based products. However, the production of cucumber seeds is impeded by source limitation and nutrient deficiency. The foliar application of micronutrients can supplement this deficiency and overcome the physiological setback. An experiment was undertaken to compare the impacts of the foliar application of Fe and Zn, as nanoparticles and fertilizers, on the yield and seed quality of cucumber under open and protected environments. A foliar spray of nano-ZnO (ZnNPs) and nano-Fe3O4 (FeNPs) at 100, 200 and 300 mg L−1, as well as ZnSO4 and FeSO4 as fertilizer (0.5%), was conducted at the vegetative stage and pre- and post-flowering stages. The NPs had a greater efficacy in an open field than in the protected (naturally ventilated poly house) environment. The application of both NPs increased seed yield (51.7–52.2%), total chlorophyll content (15.9–17.3%) and concentration of Zn and Fe in the fruit and the seed, by 2.0–58.5% and 5.0–30.5%, respectively. A significant increase in starch, soluble proteins, soluble sugars and oil content was observed in the seeds from the NP treated plants. NP treatment also enhanced the germination-related parameters, such as percent germination (16.8–17.0%), rate of germination (18.0–22.2%) and seedling vigor (59.8–72.6%). The biochemical characterization showed a significant improvement in the seed water uptake and the activity of hydrolytic enzymes (amylase and protease) in the germinating seed. The involvement of reactive oxygen species (superoxide anion and hydrogen peroxide) and antioxidant enzymes (Superoxide dismutase, Catalase and Peroxidase) in the germination process was indicated by an increase in their activities in the seeds from NP treated plants. Hence, the study proposes the potential benefit of the foliar application of 300 mg L−1 ZnNPs and 200 mg L−1 FeNPs at crucial stages of plant growth to improve the yield and seed quality in cucumbers.

Details

Language :
English
ISSN :
22237747
Volume :
11
Issue :
23
Database :
Directory of Open Access Journals
Journal :
Plants
Publication Type :
Academic Journal
Accession number :
edsdoj.6cde1e96dc0a45809254cdfe23cb387f
Document Type :
article
Full Text :
https://doi.org/10.3390/plants11233211