Back to Search Start Over

A novel stabilized artificial neural network model enhanced by variational mode decomposing

Authors :
Ali Danandeh Mehr
Sadra Shadkani
Laith Abualigah
Mir Jafar Sadegh Safari
Hazem Migdady
Source :
Heliyon, Vol 10, Iss 13, Pp e34142- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Existing artificial neural networks (ANNs) have attempted to efficiently identify underlying patterns in environmental series, but their structure optimization needs a trial-and-error process or an external optimization effort. This makes ANNs time consuming and more complex to be applied in practice. To alleviate these issues, we propose a stabilized ANNs, called SANN. The SANN efficiently optimizes ANN structure via incorporation of an additional numeric parameter into every layer of the ANN. To exemplify the efficacy and efficiency of the proposed approach, we provided two practical case studies involving meteorological drought forecasting at cities of Burdur and Isparta, Türkiye. To enhance SANN forecasting accuracy, we further suggested the hybrid VMD-SANN that integrated variation mode decomposition (VMD) with SANN. To validate the new hybrid model, we compared its results with those obtained from hybrid VMD-ANN and VMD-Radial Base Function (VMD-RBF) models. The results showed superiority of the VMD-SANN to its counterparts. Regarding Nash Sutcliffe Efficiency measure, the VMD-SANN achieves accurate forecasts as high as 0.945 and 0.980 in Burdur and Isparta cities, respectively.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
13
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.6cc51900134e42a2b877d005d455ba23
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e34142