Back to Search Start Over

Effect of change of sand properties on travel distance of ricocheted debris

Authors :
Yoon Keon Kim
Woo Chun Choi
Source :
Defence Technology, Vol 17, Iss 4, Pp 1486-1495 (2021)
Publication Year :
2021
Publisher :
KeAi Communications Co., Ltd., 2021.

Abstract

The debris from exploded buildings can ricochet after colliding with the ground, thus increasing the debris travel distance and danger from any associated impacts or collisions. To reduce this danger, the travel distance of ricocheted debris must be accurately predicted. This study analyzed the change in the travel distance of ricocheted concrete debris relative to changes in the properties of a sand medium. Direct shear tests were conducted to measure the change in internal friction angle as a function of temperature and water content of the sand. Finite element analysis (FEA) was then applied to these variables to predict the speed and angle of the debris after ricochet. The FEA results were compared with results of low-speed ricochet experiments, which employed variable temperature and water content. The travel distance of the debris was calculated using MATLAB, via trajectory equations considering the drag coefficient. As the internal friction angle decreased, the shear stress decreased, leading to deeper penetration of the debris into the sand. As the loss of kinetic energy increased, the velocity and travel distance of the ricocheted debris decreased. Changes in the ricochet velocity and travel distance of the debris, according to changes in the internal friction angle, indicated that the debris was affected by the environment.

Details

Language :
English
ISSN :
22149147
Volume :
17
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Defence Technology
Publication Type :
Academic Journal
Accession number :
edsdoj.6c9bcc68b0641929ab6f8d202530648
Document Type :
article
Full Text :
https://doi.org/10.1016/j.dt.2020.08.006