Back to Search
Start Over
Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs
- Source :
- The Lancet: Digital Health, Vol 3, Iss 5, Pp e306-e316 (2021)
- Publication Year :
- 2021
- Publisher :
- Elsevier, 2021.
-
Abstract
- Summary: Background: Coronary artery calcium (CAC) score is a clinically validated marker of cardiovascular disease risk. We developed and validated a novel cardiovascular risk stratification system based on deep-learning-predicted CAC from retinal photographs. Methods: We used 216 152 retinal photographs from five datasets from South Korea, Singapore, and the UK to train and validate the algorithms. First, using one dataset from a South Korean health-screening centre, we trained a deep-learning algorithm to predict the probability of the presence of CAC (ie, deep-learning retinal CAC score, RetiCAC). We stratified RetiCAC scores into tertiles and used Cox proportional hazards models to evaluate the ability of RetiCAC to predict cardiovascular events based on external test sets from South Korea, Singapore, and the UK Biobank. We evaluated the incremental values of RetiCAC when added to the Pooled Cohort Equation (PCE) for participants in the UK Biobank. Findings: RetiCAC outperformed all single clinical parameter models in predicting the presence of CAC (area under the receiver operating characteristic curve of 0·742, 95% CI 0·732–0·753). Among the 527 participants in the South Korean clinical cohort, 33 (6·3%) had cardiovascular events during the 5-year follow-up. When compared with the current CAC risk stratification (0, >0–100, and >100), the three-strata RetiCAC showed comparable prognostic performance with a concordance index of 0·71. In the Singapore population-based cohort (n=8551), 310 (3·6%) participants had fatal cardiovascular events over 10 years, and the three-strata RetiCAC was significantly associated with increased risk of fatal cardiovascular events (hazard ratio [HR] trend 1·33, 95% CI 1·04–1·71). In the UK Biobank (n=47 679), 337 (0·7%) participants had fatal cardiovascular events over 10 years. When added to the PCE, the three-strata RetiCAC improved cardiovascular risk stratification in the intermediate-risk group (HR trend 1·28, 95% CI 1·07–1·54) and borderline-risk group (1·62, 1·04–2·54), and the continuous net reclassification index was 0·261 (95% CI 0·124–0·364). Interpretation: A deep learning and retinal photograph-derived CAC score is comparable to CT scan-measured CAC in predicting cardiovascular events, and improves on current risk stratification approaches for cardiovascular disease events. These data suggest retinal photograph-based deep learning has the potential to be used as an alternative measure of CAC, especially in low-resource settings. Funding: Yonsei University College of Medicine; Ministry of Health and Welfare, Korea Institute for Advancement of Technology, South Korea; Agency for Science, Technology, and Research; and National Medical Research Council, Singapore.
- Subjects :
- Computer applications to medicine. Medical informatics
R858-859.7
Subjects
Details
- Language :
- English
- ISSN :
- 25897500
- Volume :
- 3
- Issue :
- 5
- Database :
- Directory of Open Access Journals
- Journal :
- The Lancet: Digital Health
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6c2eca9f15f0466d8c179be291f9b0fb
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/S2589-7500(21)00043-1