Back to Search Start Over

The Square Root UKF-SLAM Algorithm Based on the Smallest Proportion of Skewness in Single Line Sampling

Authors :
Chen MengYuan
Qin GuoWei
Xu Tong
Source :
MATEC Web of Conferences, Vol 160, p 06005 (2018)
Publication Year :
2018
Publisher :
EDP Sciences, 2018.

Abstract

In view of the distortion in the filter gain matrix calculation as well as the high computational complexity and the nonlocal effect of symmetric sampling that exists in the UKF-SLAM algorithm, the square root UKF-SLAM algorithm based on the smallest proportion of skewness in single line sampling was proposed. According to the mended algorithm, the square root of covariance matrix is brought into iteration operation instead of covariance matrix, moreover, the smallest proportion of skewness in single line sampling is utilized for the optimization of sampling strategy. The results of simulation show that the algorithm can effectively improve the position accuracy in robot as well as the estimation accuracy of feature map. Furthermore, the computational complexity is reduced and the algorithm stability is improved.

Details

Language :
English, French
ISSN :
2261236X
Volume :
160
Database :
Directory of Open Access Journals
Journal :
MATEC Web of Conferences
Publication Type :
Academic Journal
Accession number :
edsdoj.6c1f0daabfb4fc381521534154060c2
Document Type :
article
Full Text :
https://doi.org/10.1051/matecconf/201816006005