Back to Search Start Over

A novel organic chromo-fluorogenic optical sensor for detecting chromium ions

Authors :
Sayed M. Saleh
Reham Ali
Azizah Algreiby
Bayader Alfeneekh
Ibrahim A.I. Ali
Source :
Heliyon, Vol 10, Iss 17, Pp e37480- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Sensing trivalent chromium ion (Cr(III)) is widely applied in different areas, such as clinical analysis, marine, environmental monitoring, or even chemical industry applications. Cr(III) has a significant role in the physiological process of human life. It is classified as an essential micronutrient for living organisms. Herein, we developed and designed a novel optical Cr(III) ions sensor film. The investigated sensor has a relatively small dynamic range of 1.24 × 10−3 to 0.5 μM. We report a highly sensitive optical sensor film for Cr(III) ions based on diethyl 3,4-diaminothieno[2,3-b]thiophene-2,5-dicarboxylate (3D) probe. The optical characteristics of the chemical probe exhibit substantial emission at 460 nm under 354 nm excitation. Besides, the interaction of the Cr(III) ions with 3D involves a complex formation with a 2:1 (metal: ligand) ratio, which is convoyed by the main peak enhancement that centered at 460 nm of 3D, and the main peak is red-shifted to 480 nm. The easily discernible fluorescence enhancement effect is a defining characteristic of the complexation reaction between the 3D probe and Cr(III). On the basis of the substantial fluorescence mechanism caused by the formation of a (Cr(III)-3D complex, which inhibits the photo-induced electron transfer (PET) process, the devised optical sensor was proposed. This film exhibits exceptional sensitivity and selectivity due to its notable fluorescence properties, stock shift of less than 106 nm, and detection capabilities at a significantly low detection limit of 0.37 × 10−3 μM. The detection procedure is executed by utilizing a physiological pH medium (pH = 7.4) with a relative standard deviation RSDr (1 %, n = 3). In addition, the 3D sensor demonstrates a high degree of affinity for Cr(III), as determined by the calculation of its binding constant to be 1.40 × 106. We present an impressive optical sensor that is constructed upon a three-dimensional molecule.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
17
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.6c05894939643658788a1f47a1468b4
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e37480