Back to Search Start Over

Is water vapor a key player of the wintertime haze in North China Plain?

Authors :
J. Wu
N. Bei
B. Hu
S. Liu
M. Zhou
Q. Wang
X. Li
L. Liu
T. Feng
Z. Liu
Y. Wang
J. Cao
X. Tie
J. Wang
L. T. Molina
G. Li
Source :
Atmospheric Chemistry and Physics, Vol 19, Pp 8721-8739 (2019)
Publication Year :
2019
Publisher :
Copernicus Publications, 2019.

Abstract

Water vapor has been proposed to amplify the severe haze pollution in China by enhancing the aerosol–radiation feedback (ARF). Observations have revealed that the near-surface PM2.5 concentrations ([PM2.5]) generally exhibit an increasing trend with relative humidity (RH) in the North China Plain (NCP) during 2015 wintertime, indicating that the aerosol liquid water (ALW) caused by hygroscopic growth could play an important role in the PM2.5 formation and accumulation. Simulations during a persistent and heavy haze pollution episode from 5 December 2015 to 4 January 2016 in the NCP were conducted using the WRF-Chem Model to comprehensively quantify contributions of the ALW effect to near-surface [PM2.5]. The WRF-Chem Model generally performs reasonably well in simulating the temporal variations in RH against measurements in the NCP. The factor separation approach (FSA) was used to evaluate the contribution of the ALW effect on the ARF, photochemistry, and heterogeneous reactions to [PM2.5]. The ALW not only augments particle sizes to enhance aerosol backward scattering but also increases the effective radius to favor aerosol forward scattering. The contribution of the ALW effect on the ARF and photochemistry to near-surface [PM2.5] is not significant, being generally within 1.0 µg m−3 on average in the NCP during the episode. Serving as an excellent substrate for heterogeneous reactions, the ALW substantially enhances the secondary aerosol (SA) formation, with an average contribution of 71 %, 10 %, 26 %, and 48 % to near-surface sulfate, nitrate, ammonium, and secondary organic aerosol concentrations. Nevertheless, the SA enhancement due to the ALW decreases the aerosol optical depth and increases the effective radius to weaken the ARF, reducing near-surface primary aerosols. The contribution of the ALW total effect to near-surface [PM2.5] is 17.5 % on average, which is overwhelmingly dominated by enhanced SA. Model sensitivities also show that when the RH is less than 80 %, the ALW progressively increases near-surface [PM2.5] but commences to decrease when the RH exceeds 80 % due to the high occurrence frequencies of precipitation.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
19
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.6bff68b3b34ab4a3479302cb6d5fea
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-19-8721-2019