Back to Search Start Over

High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation

Authors :
Xin Zhang
Haoyin Zhong
Qi Zhang
Qihan Zhang
Chao Wu
Junchen Yu
Yifan Ma
Hang An
Hao Wang
Yiming Zou
Caozheng Diao
Jingsheng Chen
Zhi Gen Yu
Shibo Xi
Xiaopeng Wang
Junmin Xue
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Cobalt oxyhydroxide (CoOOH) is a promising catalytic material for oxygen evolution reaction (OER). In the traditional CoOOH structure, Co3+ exhibits a low-spin state configuration ( $${t}_{2{{{{{\rm{g}}}}}}}^{6}{e}_{{{{{{\rm{g}}}}}}}^{0}$$ t 2 g 6 e g 0 ), with electron transfer occurring in face-to-face $${t}_{2{{{{{\rm{g}}}}}}}^{*}$$ t 2 g * orbitals. In this work, we report the successful synthesis of high-spin state Co3+ CoOOH structure, by introducing coordinatively unsaturated Co atoms. As compared to the low-spin state CoOOH, electron transfer in the high-spin state CoOOH occurs in apex-to-apex $${e}_{{{{{{\rm{g}}}}}}}^{*}$$ e g * orbitals, which exhibits faster electron transfer ability. As a result, the high-spin state CoOOH performs superior OER activity with an overpotential of 226 mV at 10 mA cm−2, which is 148 mV lower than that of the low-spin state CoOOH. This work emphasizes the effect of the spin state of Co3+ on OER activity of CoOOH based electrocatalysts for water splitting, and thus provides a new strategy for designing highly efficient electrocatalysts.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.6be1544a3c9a4de089b769c798f6686a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-45702-4