Back to Search Start Over

Anthocyanin-Rich Butterfly Pea Petal Extract Loaded Double Pickering Emulsion Containing Nanocrystalline Cellulose: Physicochemical Properties, Stability, and Rheology

Authors :
Pankaj Koirala
Jiratthitikan Sriprablom
Thunnalin Winuprasith
Source :
Foods, Vol 12, Iss 22, p 4173 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Butterfly pea petal extract (BPE)-loaded water-in-oil-in-water (W/O/W) emulsions were fabricated using nanocrystalline cellulose (NCC) as a hydrophilic stabilizer and polyglycerol polyricinoleate (PGPR) as a hydrophobic emulsifier. The impact of different concentrations of NCC and PGPR in different phase proportions on the emulsion formation, rheology, and stability of an anthocyanin-loaded (pH ≈ 7.0) emulsion was investigated. The mean droplet size of the emulsions increased as the NCC concentration increased, while color intensity (greenness) decreased as the PGPR and NCC concentrations increased. A microscopic examination confirmed that the NCC nanoparticles stabilized the inner W1/O phase, whereas the excess concentration of non-adsorbing NCC nanoparticles was suspended in the continuous aqueous phase. The rheological results showed that robust emulsion networks were formed when the NCC concentration increased. A network structure between the droplets and the development of the NCC network during the continuous phase were attributed to a gel-like behavior. Over the course of seven days, the emulsions with a higher proportion of NCC remained stable, as in samples 3%P-%N, 5%P-2%N, and 5%P@1%N, the total anthocyanin content decreased from 89.83% to 76.49%, 89.40% to 79.65, and 86.63% to 71.40%, respectively. These findings have significant implications for the accurate formulation of particle-stabilized double emulsions for anthocyanin delivery with higher stability.

Details

Language :
English
ISSN :
23048158
Volume :
12
Issue :
22
Database :
Directory of Open Access Journals
Journal :
Foods
Publication Type :
Academic Journal
Accession number :
edsdoj.6bb43eb2bbec438eb659729b50e465d5
Document Type :
article
Full Text :
https://doi.org/10.3390/foods12224173