Back to Search
Start Over
The Univalent Function Created by the Meromorphic Functions Where Defined on the Period Lattice
- Source :
- Communications in Advanced Mathematical Sciences, Vol 2, Iss 4, Pp 303-308 (2019)
- Publication Year :
- 2019
- Publisher :
- Emrah Evren KARA, 2019.
-
Abstract
- The function $ \xi(z)$ is obtained from the logarithmic derivative function $\sigma(z)$. The elliptic function $ \wp(z) $ is also derived from the $ \xi(z) $ function. The function $ \wp(z) $ is a function of double periodic and meromorphic function on lattices region. The function $ \wp(z) $ is also double function. The function $ \varphi(z) $ meromorphic and univalent function was obtained by the serial expansion of the function $ \wp(z)$. The function $ \varphi(z) $ obtained here is shown to be a convex function.
- Subjects :
- convex function
elliptic function
latices
meromorphic function
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 26514001
- Volume :
- 2
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Communications in Advanced Mathematical Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6b8cb44805814b07a024a34b145b2d86
- Document Type :
- article
- Full Text :
- https://doi.org/10.33434/cams.607382