Back to Search Start Over

Low‐carbon power system operation with disperse carbon capture‐transportation‐utilization chain

Authors :
Zhenzi Song
Xiuli Wang
Tianyang Zhao
Mohammad Reza Hesamzadeh
Tao Qian
Jing Huang
Xin Li
Source :
IET Generation, Transmission & Distribution, Vol 18, Iss 11, Pp 2089-2104 (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract The carbon capture‐transportation‐utilization (C‐CTU) chain strengthens the coupling between terminal energy consumption and renewable energy resources (RES), achieving carbon emission reduction in power generation sectors. However, the dynamic operation of the C‐CTU chain and the uncertainties induced by RES output pose new challenges for the low‐carbon operation. To address above challenges, the nonlinear dynamic operation model of C‐CTU chain is first proposed in this study. It is further incorporated into the day‐ahead operation scheme of the electricity‐carbon integrated system considering the stochastic nature of wind power. This scheme is treated as a two‐stage stochastic integer programming (TS‐SIP) problem with a mixed‐integer nonlinear recourse. By means of the polyhedral envelope‐based linearization method, this recourse is reformulated into its linear counterpart. To further improve the computational performance of classical decomposition algorithms, a novel Benders decomposition framework with hybrid cutting plane strategies is proposed to obtain better feasible solutions within a limited time. Simulations are conducted on two power system test cases with the C‐CTU chain. Numerical results indicate that the engagement of C‐CTU chain promotes the low‐carbon economic operation of the power system. Also, the proposed decomposition algorithm shows a superior solution capability to handle large‐scale TS‐SIP than state‐of‐the‐art commercial solvers.

Details

Language :
English
ISSN :
17518695 and 17518687
Volume :
18
Issue :
11
Database :
Directory of Open Access Journals
Journal :
IET Generation, Transmission & Distribution
Publication Type :
Academic Journal
Accession number :
edsdoj.6b22a925744a45a187f645e8c64a5da4
Document Type :
article
Full Text :
https://doi.org/10.1049/gtd2.13184