Back to Search Start Over

Ion-beam assisted sputtering of titanium nitride thin films

Authors :
Timothy Draher
Tomas Polakovic
Juliang Li
Yi Li
Ulrich Welp
Jidong Samuel Jiang
John Pearson
Whitney Armstrong
Zein-Eddine Meziani
Clarence Chang
Wai-Kwong Kwok
Zhili Xiao
Valentine Novosad
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-8 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Titanium nitride is a material of interest for many superconducting devices such as nanowire microwave resonators and photon detectors. Thus, controlling the growth of TiN thin films with desirable properties is of high importance. This work aims to explore effects in ion beam-assisted sputtering (IBAS), were an observed increase in nominal critical temperature and upper critical fields are in tandem with previous work on Niobium nitride (NbN). We grow thin films of titanium nitride by both, the conventional method of DC reactive magnetron sputtering and the IBAS method, to compare their superconducting critical temperatures $$T_{c}$$ T c as functions of thickness, sheet resistance, and nitrogen flow rate. We perform electrical and structural characterizations by electric transport and x-ray diffraction measurements. Compared to the conventional method of reactive sputtering, the IBAS technique has demonstrated a 10% increase in nominal critical temperature without noticeable variation in the lattice structure. Additionally, we explore the behavior of superconducting $$T_c$$ T c in ultra-thin films. Trends in films grown at high nitrogen concentrations follow predictions of mean-field theory in disordered films and show suppression of superconducting $$T_c$$ T c due to geometric effects, while nitride films grown at low nitrogen concentrations strongly deviate from the theoretical models.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.6b214a5e7814ae4974ebaa99b25d9f9
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-31549-0