Back to Search
Start Over
Penilloic acid is the chief culprit involved in non-IgE mediated, immediate penicillin-induced hypersensitivity reactions in mice
- Source :
- Frontiers in Pharmacology, Vol 13 (2022)
- Publication Year :
- 2022
- Publisher :
- Frontiers Media S.A., 2022.
-
Abstract
- Metabolites/impurities (MIs) of penicillin are normally considered to be the main substances inducing immediate hypersensitivity reactions in penicillin treatment. Our previous research found that penicillin can cause non-allergic hypersensitivity reactions (NAHRs) by directly triggering vascular hyperpermeability and exudative inflammation. However, the chief culprits and underlying mechanisms involved in penicillin-induced NAHRs have not yet been fully elucidated. In this study, we used a combination of approaches including a mouse non-allergic hypersensitivity reaction model, UPLC-MS/MS analyses of arachidonic acid metabolites (AAMs), immunoblotting technique, and molecular docking, etc to investigate the culprits involved in penicillin-induced hypersensitivity reactions. We found penilloic acid, one of the main MIs of penicillin, could trigger NAHRs via inducing increased vascular permeability, while the other MIs did no exhibit similar effect. Penilloic acid-induced reactions were not IgE-dependent. Significantly increased arachidonic acids and cascade metabolites in lungs, and activation of RhoA/ROCK signaling pathway in the ears and lungs of mice were noticed after once administration of penilloic acid. This study revealed that penilloic acid was the chief culprit involved in penicillin-induced immediate NAHRs in mice, which mainly associated with direct stimulation of vascular hyperpermeability and exudative inflammation. The activations of AAMs and RhoA/ROCK signaling pathway played important roles in these reactions.
Details
- Language :
- English
- ISSN :
- 16639812
- Volume :
- 13
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Pharmacology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6b1c900b07b643a9bdcba18803d6d5b7
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fphar.2022.874486