Back to Search
Start Over
Methane Emission from Rice Fields: Necessity for Molecular Approach for Mitigation
- Source :
- Rice Science, Vol 31, Iss 2, Pp 159-178 (2024)
- Publication Year :
- 2024
- Publisher :
- Elsevier, 2024.
-
Abstract
- Anthropogenic methane emissions are a leading cause of the increase in global average temperatures, often referred to as global warming. Flooded soils play a significant role in methane production, where the anaerobic conditions promote the production of methane by methanogenic microorganisms. Rice fields contribute a considerable portion of agricultural methane emissions, as rice plants provide both factors that enhance and limit methane production. Rice plants harbor both methane- producing and methane-oxidizing microorganisms. Exudates from rice roots provide source for methane production, while oxygen delivered from the root aerenchyma enhances methane oxidation. Studies have shown that the diversity of these microorganisms depends on rice cultivars with some genes characterized as harboring specific groups of microorganisms related to methane emissions. However, there is still a need for research to determine the balance between methane production and oxidation, as rice plants possess the ability to regulate net methane production. Various agronomical practices, such as fertilizer and water management, have been employed to mitigate methane emissions. Nevertheless, studies correlating agronomic and chemical management of methane with productivity are limited. Moreover, evidences for breeding low-methane-emitting rice varieties are scattered largely due to the absence of coordinated breeding programs. Research has indicated that phenotypic characteristics, such as root biomass, shoot architecture, and aerenchyma, are highly correlated with methane emissions. This review discusses available studies that involve the correlation between plant characteristics and methane emissions. It emphasizes the necessity and importance of breeding low-methane-emitting rice varieties in addition to existing agronomic, biological, and chemical practices. The review also delves into the ideal phenotypic and physiological characteristics of low-methane-emitting rice and potential breeding techniques, drawing from studies conducted with diverse varieties, mutants, and transgenic plants.
Details
- Language :
- English
- ISSN :
- 16726308 and 47824646
- Volume :
- 31
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- Rice Science
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6b11a478246463ba85a0fe5d87f1928
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.rsci.2023.10.003