Back to Search
Start Over
Spin-defect characteristics of single sulfur vacancies in monolayer MoS2
- Source :
- npj 2D Materials and Applications, Vol 7, Iss 1, Pp 1-9 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract Single spin-defects in 2D transition-metal dichalcogenides are natural spin-photon interfaces for quantum applications. Here we report high-field magneto-photoluminescence spectroscopy from three emission lines (Q1, Q2, and Q*) of He-ion induced sulfur vacancies in monolayer MoS2. Analysis of the asymmetric PL lineshapes in combination with the diamagnetic shift of Q1 and Q2 yields a consistent picture of localized emitters with a wave function extent of ~3.5 nm. The distinct valley-Zeeman splitting in out-of-plane B-fields and the brightening of dark states through in-plane B-fields necessitates spin-valley selectivity of the defect states and lifted spin-degeneracy at zero field. Comparing our results to ab initio calculations identifies the nature of Q1 and Q2 and suggests that Q* is the emission from a chemically functionalized defect. Analysis of the optical degree of circular polarization reveals that the Fermi level is a parameter that enables the tunability of the emitter. These results show that defects in 2D semiconductors may be utilized for quantum technologies.
Details
- Language :
- English
- ISSN :
- 23977132
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- npj 2D Materials and Applications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6ae132c8cf4544ca8be5db226114e575
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41699-023-00392-2