Back to Search
Start Over
An ultra-sensitive and high-throughput trapping-micro-LC-MS method for quantification of circulating vitamin D metabolites and application in multiple sclerosis patients
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Quantitative analysis of the biologically-active metabolites of vitamin D (VitD), which are crucial in regulating various physiological and pathological processes, is important for clinical investigations. Liquid chromatography-tandem mass spectrometry (LC-MS) has been widely used for this purpose but existing LC-MS methods face challenges in achieving highly sensitive and accurate quantification of low-abundance VitD metabolites while maintaining high throughput and robustness. Here we developed a novel pipeline that combines a trapping-micro-LC-(T-µLC) with narrow-window-isolation selected-reaction monitoring MS(NWI-SRM) for ultra-sensitive, robust and high-throughput quantification of VitD metabolites in serum samples after derivatization. The selective-trapping and delivery approach efficiently removes matrix components, enabling high-capacity sample loading and enhancing sensitivity, throughput, and robustness. The NWI-SRM further improves the sensitivity by providing high selectivity. The lower limits of quantification (LOQs) achieved were markedly lower than any existing LC-MS methods: 1.0 pg/mL for 1,25(OH)2D3, 5.0 pg/mL for 24,25(OH)2D3, 30 pg/mL for both 25(OH)D2 and 25(OH)D3, all within a 9-min cycle. The method is applied to quantify VitD metabolites from 218 patients with multiple sclerosis. This study revealed negative correlations(r=− 0.44 to − 0.51) between the levels of 25(OH)D2 and all the three D3 metabolites in multiple sclerosis patients.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6ada20df2d0f4664a3dc10f8a1587572
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-55939-0