Back to Search
Start Over
Characteristics of Aerosol and Effect of Aerosol-Radiation-Feedback in Handan, an Industrialized and Polluted City in China in Haze Episodes
- Source :
- Atmosphere, Vol 12, Iss 6, p 670 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- In order to investigate the chemical characteristics of aerosol pollution including PM1 and PM2.5 in Handan, the offline sampling campaign was conducted and the concentrations of total water-soluble inorganic ions (TWSI), carbonaceous components (OC and EC) were analyzed. The average concentrations were 88.5 μg/m3 for PM1 and 122 μg/m3 for PM2.5, and the corresponding ratios of PM1 versus PM2.5 on non-pollution, mild-moderate pollution and heavy pollution were 0.67, 0.70 and 0.77, respectively. TWSI and OC accounted for 43.2% and 15.4% in PM1, 41.8% and 16.0% in PM2.5. Secondary components in PM2.5 and PM1 increased with heavy pollution, SNA (SO42−, NO3− and NH4+) was enriched in PM1 but SOC (Secondary Organic Carbon) was more enriched in PM1–2.5. Furthermore, for evaluating the effect of aerosol feedback the WRF-Chem model was applied to identify the aerosol-radiation interaction of aerosol feedback influence on the PM2.5 concentration and various meteorological factors in Handan. The results indicated that the aerosol radiative effects will result in an average 32.62%(36.18 W/m2) decrease in downward short wave flux at ground surface (SWDOWN), an average 17.52% (39.15 m) and 0.16% (0.44 K) decrease in planetary boundary layer height(PBLH) and surface temperature (T2). The wind speed at 10 m (WS) and relative humidity (RH) will be increased by about 4.16%(0.11 m/s) and 1.89% (0.78%), respectively.
Details
- Language :
- English
- ISSN :
- 20734433
- Volume :
- 12
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Atmosphere
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.6abfaf64278e4853a7e4f85d06623ecf
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/atmos12060670