Back to Search Start Over

Suppression of Migration and Invasion by 4-Carbomethoxyl-10-Epigyrosanoldie E from the Cultured Soft Coral Sinularia sandensis through the MAPKs Pathway on Oral Cancer Cells

Authors :
Rou-Yi Fang
Yueh-Wen Liu
Yih-Gang Goan
Jen-Jie Lin
Jui-Hsin Su
Wen-Tung Wu
Yu-Jen Wu
Source :
Advances in Pharmacological and Pharmaceutical Sciences, Vol 2024 (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

The primary reason for cancer-related fatalities is metastasis. The compound 4-carbomethoxyl-10-epigyrosanoldie E, derived from the Sinularia sandensis soft coral species grown in cultures, exhibits properties that counteract inflammation. Moreover, it has been observed to trigger both apoptosis and autophagy within cancerous cells. This research focuses on examining the inhibitory impact of 4-carbomethoxyl-10-epigyrosanoldie E on the migration and invasion processes in Cal-27 and Ca9-22 oral cancer cell lines. To assess how this compound affects cell migration and invasion, the Boyden chamber assay was employed. Furthermore, Western blot analysis was utilized to explore the underlying molecular mechanisms. In a dose-dependent manner, 4-carbomethoxyl-10-epigyrosanoldie E notably decreased the levels of matrix metalloproteinase-2 (MMP-2) and MMP-9, along with urokinase-type plasminogen activator (uPA), in both Cal-27 and Ca9-22 cell lines. Conversely, it elevated the concentrations of tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2. In addition, the treatment with this compound led to the inhibition of phosphorylation in extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). It also curtailed the expression of several key proteins including focal adhesion kinase (FAK), protein kinase C (PKC), growth factor receptor-bound protein 2 (GRB2), Rac, Ras, Rho A, mitogen-activated protein kinase kinase kinase 3 (MEKK3), and mitogen-activated protein kinase kinase 7 (MKK7). Furthermore, the expression levels of IQ-domain GTPase-activating protein 1 (IQGAP1) and zonula occludens-1 (ZO-1) were significantly reduced by the compound. The ability of 4-carbomethoxyl-10-epigyrosanoldie E to inhibit the migration and invasion of Cal-27 and Ca9-22 oral cancer cells was observed to be dose dependent. This inhibitory effect is primarily attributed to the suppression of MMP-2 and MMP-9 expression, as well as the downregulation of the mitogen-activated protein kinase (MAPK) signaling pathway.

Subjects

Subjects :
Therapeutics. Pharmacology
RM1-950

Details

Language :
English
ISSN :
26334690 and 46009523
Volume :
2024
Database :
Directory of Open Access Journals
Journal :
Advances in Pharmacological and Pharmaceutical Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.6abe6ebe29ac46009523c62e186cc1d6
Document Type :
article
Full Text :
https://doi.org/10.1155/2024/6695837