Back to Search Start Over

Surface-Enhanced Raman Spectroscopy Combined with Multivariate Analysis for Fingerprinting Clinically Similar Fibromyalgia and Long COVID Syndromes

Authors :
Shreya Madhav Nuguri
Kevin V. Hackshaw
Silvia de Lamo Castellvi
Yalan Wu
Celeste Matos Gonzalez
Chelsea M. Goetzman
Zachary D. Schultz
Lianbo Yu
Rija Aziz
Michelle M. Osuna-Diaz
Katherine R. Sebastian
W. Michael Brode
Monica M. Giusti
Luis Rodriguez-Saona
Source :
Biomedicines, Vol 12, Iss 7, p 1447 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Fibromyalgia (FM) is a chronic central sensitivity syndrome characterized by augmented pain processing at diffuse body sites and presents as a multimorbid clinical condition. Long COVID (LC) is a heterogenous clinical syndrome that affects 10–20% of individuals following COVID-19 infection. FM and LC share similarities with regard to the pain and other clinical symptoms experienced, thereby posing a challenge for accurate diagnosis. This research explores the feasibility of using surface-enhanced Raman spectroscopy (SERS) combined with soft independent modelling of class analogies (SIMCAs) to develop classification models differentiating LC and FM. Venous blood samples were collected using two supports, dried bloodspot cards (DBS, n = 48 FM and n = 46 LC) and volumetric absorptive micro-sampling tips (VAMS, n = 39 FM and n = 39 LC). A semi-permeable membrane (10 kDa) was used to extract low molecular fraction (LMF) from the blood samples, and Raman spectra were acquired using SERS with gold nanoparticles (AuNPs). Soft independent modelling of class analogy (SIMCA) models developed with spectral data of blood samples collected in VAMS tips showed superior performance with a validation performance of 100% accuracy, sensitivity, and specificity, achieving an excellent classification accuracy of 0.86 area under the curve (AUC). Amide groups, aromatic and acidic amino acids were responsible for the discrimination patterns among FM and LC syndromes, emphasizing the findings from our previous studies. Overall, our results demonstrate the ability of AuNP SERS to identify unique metabolites that can be potentially used as spectral biomarkers to differentiate FM and LC.

Details

Language :
English
ISSN :
12071447 and 22279059
Volume :
12
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Biomedicines
Publication Type :
Academic Journal
Accession number :
edsdoj.6a4aba5d9f1447d9ae10b30d31896f2d
Document Type :
article
Full Text :
https://doi.org/10.3390/biomedicines12071447