Back to Search Start Over

A Near Real-Time Mapping of Tropical Forest Disturbance Using SAR and Semantic Segmentation in Google Earth Engine

Authors :
John Burns Kilbride
Ate Poortinga
Biplov Bhandari
Nyein Soe Thwal
Nguyen Hanh Quyen
Jeff Silverman
Karis Tenneson
David Bell
Matthew Gregory
Robert Kennedy
David Saah
Source :
Remote Sensing, Vol 15, Iss 21, p 5223 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Satellite-based forest alert systems are an important tool for ecosystem monitoring, planning conservation, and increasing public awareness of forest cover change. Continuous monitoring in tropical regions, such as those experiencing pronounced monsoon seasons, can be complicated by spatially extensive and persistent cloud cover. One solution is to use Synthetic Aperture Radar (SAR) imagery acquired by the European Space Agency’s Sentinel-1A and B satellites. The Sentinel 1A and B satellites acquire C-band radar data that penetrates cloud cover and can be acquired during the day or night. One challenge associated with operational use of radar imagery is that the speckle associated with the backscatter values can complicate traditional pixel-based analysis approaches. A potential solution is to use deep learning semantic segmentation models that can capture predictive features that are more robust to pixel-level noise. In this analysis, we present a prototype SAR-based forest alert system that utilizes deep learning classifiers, deployed using the Google Earth Engine cloud computing platform, to identify forest cover change with near real-time classification over two Cambodian wildlife sanctuaries. By leveraging a pre-existing forest cover change dataset derived from multispectral Landsat imagery, we present a method for efficiently developing a SAR-based semantic segmentation dataset. In practice, the proposed framework achieved good performance comparable to an existing forest alert system while offering more flexibility and ease of development from an operational standpoint.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.6a2dd12ae31d4107ae01b75f26701354
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15215223