Back to Search Start Over

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

Authors :
Camila Felix Vecchi
Rafaela Said dos Santos
Jéssica Bassi da Silva
Marcos Luciano Bruschi
Source :
Beilstein Journal of Nanotechnology, Vol 13, Iss 1, Pp 503-516 (2022)
Publication Year :
2022
Publisher :
Beilstein-Institut, 2022.

Abstract

Microneedles (MNs) are a means to break the protective skin barrier in a minimally invasive way. By creating temporary micropores, they make biologically active agents available in the skin layers. Propolis (PRP) is a gum resin with a complex chemical composition, produced by bees Apis mellifera L. and showing several therapeutic properties (i.e., antibacterial, antiviral, antifungal, anti-inflammatory, healing, and immunomodulatory properties). The administration of PRP extracts by conventional routes has some disadvantages, such as running off over the skin in liquid or emulsion form. When taken orally, the extracts have a strong and unpleasant taste. The aim of this work was to fabricate and characterize microneedles containing polyvinyl alcohol, polyvinylpyrrolidone, poloxamer P407, and an ethanolic or glycolic extract of PRP. Also, the obtained structures were microscopically and mechanically characterized. The results of the mechanical analysis showed that formulations containing 3% of P407 presented the highest compression values in a hard surface, which was also confirmed by the height and base values of the morphological analysis and by the microscopy images. It was possible to design MNs and select the best formulations for future tests. MNs containing an ethanolic extract of PRP showed to be better structured than MNs containing a glycolic extract of PRP. The MNs obtained in these studies proved to be a promising platform for the topical application of PRP.

Details

Language :
English
ISSN :
21904286
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Beilstein Journal of Nanotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.69e91b0082a4bc493508bdfea5d5f9c
Document Type :
article
Full Text :
https://doi.org/10.3762/bjnano.13.42