Back to Search Start Over

Leveraging Self-Paced Semi-Supervised Learning with Prior Knowledge for 3D Object Detection on a LiDAR-Camera System

Authors :
Pei An
Junxiong Liang
Xing Hong
Siwen Quan
Tao Ma
Yanfei Chen
Liheng Wang
Jie Ma
Source :
Remote Sensing, Vol 15, Iss 3, p 627 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Three dimensional (3D) object detection with an optical camera and light detection and ranging (LiDAR) is an essential task in the field of mobile robot and autonomous driving. The current 3D object detection method is based on deep learning and is data-hungry. Recently, semi-supervised 3D object detection (SSOD-3D) has emerged as a technique to alleviate the shortage of labeled samples. However, it is still a challenging problem for SSOD-3D to learn 3D object detection from noisy pseudo labels. In this paper, to dynamically filter the unreliable pseudo labels, we first introduce a self-paced SSOD-3D method SPSL-3D. It exploits self-paced learning to automatically adjust the reliability weight of the pseudo label based on its 3D object detection loss. To evaluate the reliability of the pseudo label in accuracy, we present prior knowledge based SPSL-3D (named as PSPSL-3D) to enhance the SPSL-3D with the semantic and structure information provided by a LiDAR-camera system. Extensive experimental results in the public KITTI dataset demonstrate the efficiency of the proposed SPSL-3D and PSPSL-3D.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.69b3c9c913fb4f8b9f8ad982867c8ea2
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15030627