Back to Search Start Over

Sensor system for development of perception systems for ATO

Authors :
Rustam Tagiew
Dirk Leinhos
Henrik von der Haar
Christian Klotz
Dennis Sprute
Jens Ziehn
Andreas Schmelter
Stefan Witte
Pavel Klasek
Source :
Discover Artificial Intelligence, Vol 3, Iss 1, Pp 1-24 (2023)
Publication Year :
2023
Publisher :
Springer, 2023.

Abstract

Abstract Developing AI systems for automatic train operation (ATO) requires developers to have a deep understanding of the human tasks they are trying to replace. This paper fills this gap and translates the regulatory requirements from the context of German railways for the AI developer community. As a result, tasks such as train’s path monitoring for collision prediction, signal detection, door operation, etc. are identified. Based on this analysis, a functionally justified sensor setup with detailed configuration requirements is presented. This setup was also evaluated by a survey within the railway industry. The evaluated sensors include RGB/IR cameras, LIDARs, radars and ultrasonic sensors. Calculations and estimates for the evaluated sensors are presented graphically and included in this paper. However, the ultimate sensor setup is still a subject of research. The results of this paper also address the lack of training and test datasets for railway AI systems. It is proposed to acquire research datasets that will allow the training of domain adaptation algorithms to transform other datasets, thus increasing the number of available datasets. The sensor setup is also recommended for such research datasets.

Details

Language :
English
ISSN :
27310809
Volume :
3
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Discover Artificial Intelligence
Publication Type :
Academic Journal
Accession number :
edsdoj.69afdb32696430384db33a905f8f0c0
Document Type :
article
Full Text :
https://doi.org/10.1007/s44163-023-00066-4