Back to Search Start Over

Methylselenol Produced In Vivo from Methylseleninic Acid or Dimethyl Diselenide Induces Toxic Protein Aggregation in Saccharomyces cerevisiae

Authors :
Marc Dauplais
Katarzyna Bierla
Coralie Maizeray
Roxane Lestini
Ryszard Lobinski
Pierre Plateau
Joanna Szpunar
Myriam Lazard
Source :
International Journal of Molecular Sciences, Vol 22, Iss 5, p 2241 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Methylselenol (MeSeH) has been suggested to be a critical metabolite for anticancer activity of selenium, although the mechanisms underlying its activity remain to be fully established. The aim of this study was to identify metabolic pathways of MeSeH in Saccharomyces cerevisiae to decipher the mechanism of its toxicity. We first investigated in vitro the formation of MeSeH from methylseleninic acid (MSeA) or dimethyldiselenide. Determination of the equilibrium and rate constants of the reactions between glutathione (GSH) and these MeSeH precursors indicates that in the conditions that prevail in vivo, GSH can reduce the major part of MSeA or dimethyldiselenide into MeSeH. MeSeH can also be enzymatically produced by glutathione reductase or thioredoxin/thioredoxin reductase. Studies on the toxicity of MeSeH precursors (MSeA, dimethyldiselenide or a mixture of MSeA and GSH) in S.cerevisiae revealed that cytotoxicity and selenomethionine content were severely reduced in a met17 mutant devoid of O-acetylhomoserine sulfhydrylase. This suggests conversion of MeSeH into selenomethionine by this enzyme. Protein aggregation was observed in wild-type but not in met17 cells. Altogether, our findings support the view that MeSeH is toxic in S. cerevisiae because it is metabolized into selenomethionine which, in turn, induces toxic protein aggregation.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
22
Issue :
5
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.698ecdfa5b14fdd91ae176bd646e6b5
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms22052241